• 全球领先!中国灭活疫苗被阿联酋紧急批准:医务人员优先

    全球领先!中国灭活疫苗被阿联酋紧急批准:医务人员优先

    据统计,新冠病毒在全球已经感染了2800多万人,随着流感季的到来,不少国家甚至开始明显的反弹。 全球进入III期临床试验的疫苗有9种,国内就占了3种,其中2种都是国药集团研发的灭活疫苗。 由于国内没什么病例了,国药集团的灭活疫苗目前主要是在海外做III期临床,包括阿联酋、巴林、秘鲁、摩洛哥、阿根廷等国家和地区紧锣密鼓地展开,入组接种5万人,样本人群现已覆盖115个国家,各方面进展均全球领先。 在阿联酋,中国研发的灭活疫苗已经完成了III期临床, 阿联酋卫生和预防部部长阿卜杜拉赫曼·欧维斯表示,研究结果表明该疫苗安全有效,接种对象不仅产生了针对新冠肺炎病毒的抗体,且无明显副作用,疫苗的安全性具有保障。 由于近期阿联酋的病例反弹较多,两周内已经出现了10000例病例,该国面临着严峻的防疫形势。 为了应对接下来的风险,阿联酋已经紧急批准了中国研发制造的灭活疫苗,优先供应给医务人员。 在这样的条件下,阿联酋日前紧急批准了中国产的灭活疫苗,准许一线的医务人员优先注射中国疫苗,减少一线人员的感染风险。

    时间:2020-09-15 关键词: 病毒 疫苗 新冠病毒

  • 小米有品上架新品:59秒智能感应消毒卫士

    小米有品上架新品:59秒智能感应消毒卫士

    日前,小米有品就推出了“59秒智能感应消毒卫士”,现在又上架了一款便携式“魔盒”——魔雅便携式杀菌盒,售价89元。小米有品这款魔雅便携式杀菌盒,采用三重UVC紫外除菌,杀菌率99.99%,在外就餐常备。 材质方面采用了食品接触接级材质,内置筷子和勺子采用了304不锈钢,能够有效消除日常用具中的细菌因子、霉菌因子、病毒因子等,有效保护身体健康。 无论是外出就餐、上班、出行、公司午餐、学校就餐都可以轻松携带,随时随地消毒,有了这款魔雅便携式杀菌盒,就不用担心外出就餐餐具的不卫生了。 使用时,只需长按触摸键两秒即可开关机,开启消毒5分钟后自动关机。 同时自携带餐具,也避免了对一次性餐具的使用,既保护了自己,也爱护了环境,是值得提倡的绿色用餐方式。 但是,疫情全球蔓延,形势依旧不容乐观。

    时间:2020-09-13 关键词: 小米 杀菌盒

  • 全球新冠病毒感染2800多万人 ,张文宏医生称:全球抗疫曙光乍现

    全球新冠病毒感染2800多万人 ,张文宏医生称:全球抗疫曙光乍现

    据最新消息,新冠病毒在全球已经感染了2800多万人,根据目前的形势,还没有下降的迹象。不过张文宏医生刚刚撰文称全球抗疫曙光乍现。 上海复旦大学附属华山医院感染科主任张文宏表示,世界疫情看似无边蔓延,峰值至今未至,其实曙光已现。 在此之前,世卫组织网站显示,截至欧洲中部时间12日15时59分(北京时间21时59分),全球确诊病例较前一日增加287968例,达到28329790例;死亡病例增加5783例,达到911877例。 根据他的说法,目前已经有三大要素值得关注,首先就是全球逐渐达成(抗疫)共识,联合国大会通过了新冠决议,“开展国际合作,践行多边主义,团结互助,是全世界有效应对新冠疫情等全球危机的唯一途径”。 第二个因素来自于科技上的,自然感染与疫苗注射后的抗体水平在4-6个月后仍不衰减,主要证据是中国的疫苗试验机冰岛的血清学筛查研究,显示91.1%的感染康复者血清抗体阳性,并且持续4个月维持在较高水平。 最后一个因素则是来自病毒的致死率持续下降,冰岛的病死率在0.3%,,中国第二波疫情中上海输入600多病例无一死亡。 张文宏医生表示,世界各国疫情控制的较好的地区病死率均已经明显下降。疫苗问世之后,全球因新冠病毒感染的病死率将降至1%以下,此时世界将会逐渐全面开放。 总之,张文宏医生认为,全球抗疫的曙光已经出现,预计希望就在不远处等着我们。

    时间:2020-09-13 关键词: 病毒 新冠病毒

  • 钟南山表示:世界疫情远远没有结束,需要全世界各国共同努力

    钟南山表示:世界疫情远远没有结束,需要全世界各国共同努力

    近日消息,钟南山在接受央视采访时表示,世界新冠肺炎疫情还远远没有结束,疫情发展很快,且没有缓和迹象,抗疫斗争的最后胜利需要全世界各国共同努力。 钟南山说:“现在中国只是在第一个阶段取得很大的胜利,但是从世界范围来看,疫情远远没有结束。一直到今天,疫情的发展还是很快,全世界(确诊)2700多万,接近2800万,死亡的人数接近80万,这个是一个非常高的数值,而且看起来还没有缓和的迹象。” “对我们来说任务还是很重。因为中国一个国家好,那不可能换来全世界的安宁,所以有很多的事情要做,除了中国做好以外,还要跟全世界的各国共同努力、团结,才能赢得抗疫斗争的最后胜利。” 根据美国约翰斯·霍普金斯大学发布的新冠疫情最新统计数据显示,截至美国东部时间10日20时28分(北京时间11日8时28分),全球新冠确诊病例累计超过2800万例,达28047828例,累计死亡病例为907377例。 美国是累计确诊病例和死亡病例最多的国家,累计确诊6396047例,累计死亡191731例。 此外,值得注意的是,统计数据中累计确诊病例较多的国家还有印度、巴西、俄罗斯、秘鲁等,累计死亡病例较多的国家还有巴西、印度、墨西哥、英国等。

    时间:2020-09-11 关键词: 新冠肺炎 钟南山

  • 英国阿斯利康公司新冠疫苗受试者披露不良反应:发冷、头痛、高烧39度

    英国阿斯利康公司新冠疫苗受试者披露不良反应:发冷、头痛、高烧39度

    据消息,当地时间9月8日,英国制药巨头阿斯利康(AstraZeneca)紧急宣布,因一名接种了疫苗的受试者出现严重的不良反应,暂停其新冠疫苗AZD1222项目在全球所有的疫苗试验。 国内媒体援引英媒报道称,当地时间9月10日,英国阿斯利康公司新冠疫苗受试者披露了受试后出现的不良反应。 受试者称,他在今年5月份接种了第一针疫苗,14个小时后开始发冷、头痛、浑身虚弱,曾一度高烧至39度。 “我在凌晨2点左右行了,浑身发冷,体温高达39度,整个人都很虚弱,没办法起身移动。”同时,他还出现了严重的头痛和疲劳反应,直到接种后第三天才开始缓解,但依然感到虚弱。 英国阿斯利康公司的新冠疫苗此前已经进入Ⅲ期临床试验,全球的受试者约有18000人。 阿斯利康的这款腺病毒载体新冠疫苗一直被寄予厚望,在第一与第二阶段试验成功后,它被认为是可能首批上市的疫苗之一,如今却成为全球首个宣布暂停的、已进入Ⅲ期临床试验的新冠候选疫苗。 被叫停后,全球还有8个进入III期试验的新冠病毒疫苗,其中有3个来自中国。 9月10日晚,国药集团中国生物负责人表示,国药中国生物研制的两款新冠灭活疫苗已经接种了数十万人次,无一例明显不良反应,无一人感染。 此外,最值得一提的是,打完疫苗之后去海外高风险国家和地区的数万人,截至目前实现了零感染。

    时间:2020-09-11 关键词: 新冠肺炎 新冠病毒

  • ARM9的无线多床位心电监护仪的设计

    ARM9的无线多床位心电监护仪的设计

    ARM9的无线多床位心电监护仪的设计 1 引言   随着社会生活节奏加快、人口逐渐老龄化,心血管疾病已经成为同前威胁人类生命的丰要疾病之一,此类疾病往往具有突发性、短暂性和危险性的特点,如果不能及时发现并进行治疗将会产生非常严重的后果。心电图是检查.诊断和预防该类疾病的主要手段和依据,对于心肌梗塞、心律失常等症状,心电监护仪的使用贯穿于治疗、康复的整个过程。由于传统的基于PC机平台的心电躲护仪,价格昂贵,体积庞大,不便于移动且主要集中在大医院,给医生和病人带来了很大的不便。因此,为了降低成本、缩小体积,本文设计了一种基于ARM9微处理器的新型便携式多床位遥测心电监护仪。该监护仪采用Samsung公司的一款以ARM920T为控制器内核的16/32位高速处理器S3C2410A芯片作为系统控制核心,利用nRF401无线收发芯片发送和接收心电数据,具有功耗低、体积小、可靠性高、操作简单等优点。 2 系统结构   该遥测心电监护仪可同时监护1~12个床位.系统结构框图如图1所示.其中与PC机相连的S3C2410A作为中心躲护端.其功能是传递由PC机发出的命令,与监护各个床位的监护终端进行通信,将各个临护终端所采集到的数据汇总到中心监护端,并通过USB口传递给Pc机。监护一个床位的便携式心电监护终端作为终端节点,功能是采集心电信号,对采集到的数据进行必要的处理,同时当收到中心监护端的命令时,做出回应。 图1 系统结构框图  3 系统硬件设计   系统硬件设计包括中心监护端的硬件设计和监护一个床位的各个心电监护终端的硬件设计两大部分。中心监护端的硬件设计包括S3C2410A与PC机的连接和nRF401与S3C2410A的连接。由于S3C2410A具有USB设备控制器,因此可通过USB口与PC机相连,并得到5V的T作电压。无线收发芯片nRF401直接与S3C2410A的串口1连接。图2为监护一个床位的心电监护终端硬件电路的结构框图,包括ARM微处理器S3C2410A、心电放大及采集电路、外部扩展的Nand FLash存储器、电源、LCD显示、键盘和nRF401尤线数传模块等。 3.1心电采集电路   心电采集电路包括放大器、低通滤波器、50Hz陷波器等。该电路的放大器由差动放大电路和放大级电路两级放大电路组成。导联系统采用通用的二电极方式,右胸上电极及左腹下电极为心电采样电极.右腹下电极为右腿驱动电极。由于采集的心电信号是筹模信号,采用三运放筹动放大电路作为第一级放大电路,增益约为22,再经第二级放大电路,总增益接近1000。由于心电信号属于低频信号,因此,为消除高频信号,本设计了采用了一阶滤波电路的低通滤波器,截止频率为100Hz。为抑制50Hz的工频干扰,还设计了二阶压控电压源带阻滤波器,即50Hz陷波器。 图2 监护1个床位的硬件电路结构框图 3.2 ARM微处理器模块   S3C2410A是二星公司推出的一款基于ARM920T处理器构架的嵌入式CPUS3C2410,它提供8通道的10位模数转换器,转换器以2.5MHz MD转换时钟将模拟输入信号以最大500ksps转换率转换为lO位二进制数字编码。根据美困心脏学会AHA标准[3]和Nyquist采样定律,当信号采样频率等于或大干信号最高频率的2倍时,就可以从抽样后的信号中不失真的还原出原信号。ECG频率范围为0.05~100Hz,中心频率在17Hz左右,故取采样频率取200Hz,即采样周期为5ms即可满足要求。采集到的信号经通道1送入S3C2410A微处理器。经分析处理后在液晶屏上显示心电波形和分析结果。 3.3无线收发模块   无线收发模块采用Nordic公司研制的单片UHF无线收发芯片nRF401,该芯片工作在433MHzISM(Industrial,scienTIfic and Medical)濒段。该频段无需申请许可证。并采用FSK调制解调技术,抗干扰能力强,并采用PLL频率合成技术,频牢稳定性好,数据传输速率可达20kbDs,传输距离可达1000m,完全满足本设计所需要的通信距离要求。不同于其他的RF单片芯片,nRF401通过单片机串口直接于MCU通信,而无需对数据进行曼彻斯特编码,这使的nRF401的外围元件很少,只包括一个基准晶振和几个无源平安真人视讯娱乐网,具有成本低、一致性好等特点。本设计中,nRF401直接与S3C2410A的串口1连接。 3.4存储、显示和键盘模块   为了实现大容量的数据存储,利用S3C2410A自带的Nand Flash控制器扩展了一片16Mx8位的Nand Flash存储器,可存储12小时的心电数据。为了使用户能够对采集到的心电信号有一个直观的印象和进行常识性的观察,利用S3C2410A自带的LCD控制器,设计了LCD显示屏的接口,并选用了一块240x128的LCD显示屏,用于显示所采集的心电信号及一些基本参数。系统还设计了一个4x4的键盘模块,用户可通过键盘实现一些基本功能的切换。 4 系统软件设计   本系统的软件设计是基于Windows CE操作系统的。Windows CE是为各种嵌入式系统和产品设计的一种压缩的、具有高效的、可升级的操作系统,具有多线性、多仟务、全优先的操作系统环境。由于Window CE操作系统本身没有自带独立的开发环境,因此,需要在PC机(宿主机)上完成应用程序的开发,实现仿真.并针对ARM嵌入式设备(目标机)进行交叉编译,使其与目标机的CPU体系结构相匹配,使操作系统和应用软件在目标机上也能正常运行。然后再移植到各目标机上。在Windows CE操作系统构建起来之后,就是上层应用程序的实现问题。 4.1中心监护端程序设计   Windows CE是一个多任务、多线程的操作系统[6]。图为中心监护端的功能不只是单一的网络通信,还要进行数据分析和处理,所以不在主线程中直接进行通信。而是在主线程中创建一个单独的子线程负责等待PC机的命令,收到命令后,为其创建一个单独的通信子线程与相应的终端节点进行通信.等待子线程继续等待PC机的命令。通信子线程接收数据并进行校验,并通过USB口传递到PC机。   由于多个通信子线程可能会同时对共享资源nRF401进行访问,形成线程冲突,因此需要协调好各个线程之间的同步问题。互斥对象(Mutex)是Windows CE操作系统所提供的实现线程同步的方法之一,主要用于协调多个线程对共享资源的访问,其原理是只有拥有互斥对象的线程才具有访问共享资源的权限。由于互斥对象只有一个,因此就决定了任何情况下此共享资源都不会同时被多个线程所访问。首先,利用API所提供的函数CreateMutex()创建一个互斥对象,初始化为FALSE状态以标识该互斥对象处于未被任何线程占有状态。通信子线程通过waitForSingleobiect()来请求占用该互斥对象,若此时该互斥对象被占用,则该线程需等待直到前一线程释放后才能成功占用;若此时该互斥对象未被占用,则可以实现对共享资源nRF401的访问。例如负责与床位号为n的监护终端通信的子线程获得对nRF401的访问权后,该子线程会发送一个1字节的同步信号“n”,床位号为n的监护终端接收到命令后,返回“n”作为应答,该通信子线程收到应答,核对正确后,双方开始数据传输,监护终端将数据及其校验和以数据包的形式传送给中心监护端。该子线程接收完毕后,结束通信,用ReleaseMutex()来释放对互斥对象的拥有权,完成对于共享资源nRF401的访问,从而其它线程可有机会获取对nRF401的访问权。然后对所接收的数据进行校验,再次提出占用互斥对象请求。这样,每个通信子线程访问nRF401的机会均等,子线程问相互独立,避免了程序死锁在一个连接上,提高了系统的整体响应速度。 4.2监护终端程序设计   监护一个床位的各监护终端的程序设计同样采用多线程的结构,在主线程中对心电信号进行A/D转换、必要的处理和存储、显示等。另创建一个子线程,置nRF401为接收状态,等待接收中心监护端的命令,收到命令并检验合法后,置nRF401为发送状态发送回应,并从存储器巾读取数据打包发送,若收到中心监护端校验错误信息,则重发数据包。 4.3 QRS波的检测   在心电分析中,要进行参数测量和波形分析,计算R-R间隔和心率,首先要进行QRS波的检测。本文采用四点平均滤波器法首先对心电信号进行滤波,滤除电源工频干扰、基线漂移,肌电噪声、运动伪迹等所带来的干扰。其解析式为:   其对心电信号的中心频率(17Hz)影响较小,同时可抑制高频噪声和50Hz的工频干扰。再对经过滤波后的心电信号的一、二阶差分值进行平滑处理,利用心电信号的二阶差分值极小值和一阶差分过零点在较短的时间窗内实现QRS波精确定位。即对四点滤波后的心电信号y(n)进行一阶和二阶差分,通过不应期判别、幅值判别等方法找到R波对应的二阶差分的极小值的位置。再根据啊二阶差分与x(n)、y(n)的时延关系,求出滤波信号和原心电信号中R波的位置。在心电信号的一阶差分信号中,R波和与其对应的Q,S波的位置关系为:如果R波在一阶差分信号中为QRS波群所对应的向下过零点(其值为负),则Q波应为R波所在位置前面的第1个向上过零点(其值为正);S波为R波所在位置后面的第1个向上过零点(其值为正)。这样,由已知的R波的位置即可检测出 Q,S在一阶差分中的位置,再根据时延关系就而可以求出R-R问期、心率等参数。由于筹分会增加部分高频噪音,上述计算是在一阶和二阶差分经平滑移动处理后进行的。该算法能抑止多种噪声对心电信号的影响,经过临床测试,在静息和慢走情况下.算法对动态心电的检测准确率非常高;即使在做体操和慢跑的情况下,其正确率还是在99.8%以上。 5 实验结果   使用此监护仪分别对12名志愿者进行了心电数据采集。实验表明,该监护仪能同时监护12个病人,也能独立监护1个病人,实时性良好.心电波形显示清晰,对心电数据分析准确,心律失常时,会自动报警,并对其进行存储和回放。佩戴者可在半径100米范围内活动得到较好的监护,采用2节5号电池供电,可连续监测20小时。 6 结论   本文设计了一种基于ARM9微处理器的新型便携式多床位无线遥测心电监护仪,该监护仪硬件集成度高,体积小,功耗低,便于患者随身携带,在不影响患者日常活动的同时使患者得纠较好的监护。本文的创新之处是采用Windows CE嵌入式操作系统作为软件平台,具有易定制、可扩展、高稳定性等优点。采用多线程编程,可同时监护多个床位,各线程之间相对独立,避免了波形显示停滞,或死锁在一个连接上,提高了系统的整体响应速度,使系统实时性更好。在Windows CE环境下,还可以通过中间驱动程序为S3C2410A扩展串口通信,实现更多床位的实时集中监护。   项目经济效益:3000万元。

    时间:2020-09-10 关键词: 心电监护仪

  • ZigBee模块的运动数据采集与传输设计

    ZigBee模块的运动数据采集与传输设计

    ZigBee模块的运动数据采集与传输设计 ADl公司的ADIS16355提供完全的三轴惯性检测(角度运动与线性运动)。内核采用iMEMS传感器技术,内置嵌入式处理器用于传感器校准与调谐;采用SPI接口,方便连接与编程;具有±10 g测试范围,环境温度在-40~+85℃;具可编程的功率控制能力和可编程的滤波器设计;超小型模块尺寸,应用非常广泛。利用ARM7微处理器LPC2148对其进行数据的采集并存储在SD卡中,以便后续数据传输。该套系统应用非常广,可以作为医疗方面病人康复的数据采集分析系统,也可以作为运动器材的数据采集分析控制系统。1 系统整体设计1.1系统架构整个数据采集传输系统结构如图1所示。利用LPC2148对ADIS16355进行控制并负责把采集的数据送往SD卡,数据在存储的同时可以利用ZigBee模块进行无线的发送,送往客户端接收处理。在接收端,可以利用客户端平台进行观测处理采集的数据;也可以通过把SD卡取下来放PC机上进行分析。1.2  电路设计整个设计分为3部分:ADIS16355数据采集、ZigBee数据发送、SD卡数据存储。(1)数据采集与发送电路电路连接如图2所示。ADIS16355提供了SPI接口,主要由4个引脚构成:SCLK0、MOSI0、MISO0及SSEL0。其中SCLK0是整个SPI总线的公用时钟引脚,MOSI0、MISO0为主机、从机的输入输出引脚。SSEL0是从机的标志引脚,对于相互通信的两个SPI总线的平安真人视讯娱乐网,SSEL0引脚电平低的是从机,电平高的是主机。发送模块采用ZigBee模块。在数据传输接口电路方面提供了通用异步收发模式(UART),主要有RXD1、TXD1、DTRl。RXDl为数据的发送,TXDl为数据的接收;DTR1作为ZigBee模块的控制,可以通过主控芯片LPC2148控制该引脚来对ZigBee模块的功率进行控制,在数据不向外发送时,使该模块工作在睡眠模式。(2)存储电路考虑到系统携带的方便性以及对于数据存储量大和低功耗的需求,选择了SD卡。SD卡有两种接口协议模式,分别为SD模式与SPI模式,不同的模式下各个引脚的定义不同。在具体的通信中,主机LPC2148只能选择一种通信模式,卡会自动检测复位命令的模式,而且在以后的通信中都会按照该种通信模式进行通信。LPC2148自带了硬件接口SPI,所以使用SPI接口访问卡是很方便的。在图3的电路设计中给出了4条线,SSEL1是主机LPC2148向卡发送的片选信号、MOSI1是主机向卡发送的单向数据信号、SCLK1是主机向卡发送的时钟信号、MISO1是卡向主机发送的单向数据信号。1.3  系统设计中功耗的考虑在数据采集传输方面,要求使用方便且工作时间长,所以在供电方面采用了可充电电池,这就对系统的功耗提出了一个要求,即必须是低功耗的,使系统能长达数月连续工作。LPC2148采用了精简指令的32位高速处理器,供电电压为3.3 V,内核电压2.5 V,芯片功耗是比较低的。传感器模块ADIS16355与ZigBee传输模块都具有可编程的功耗控制,通过设置寄存器数据可以使其在待机模式下进入睡眠模式,充分满足系统设计要求。经测试,系统在利用自制的可充电7 V电池,容量为1 300 mAh的供电条件下,可以连续工作4~5个月。2  软件设计系统软件设计主要分为3部分:SD卡的读写、传感器数据采集、ZigBee数据收发,程序的流程如图3所示。对于固件的程序开发采用Keil uVision3来完成,然后利用Keil ULINK2仿真器进行下载调试。在此给出三轴传感器ADIS16355数据采集的部分实现程序:3  性能测试该套数据采集设备采用了无线的ZigBee传输模块构成自组织网络,实测最大的无障碍通信距离可以达到400 m左右。

    时间:2020-09-10 关键词: Zigbee

  • 智能人体心率检测装置的设计方案

    智能人体心率检测装置的设计方案

    智能人体心率检测装置的设计方案 0 引 言   心率是人体中一个非常重要的生命信息,而传统的脉诊由于其定性化和主观性影响了心率测试的精度,成为中医脉诊应用、发展和交流中的制约因素。为了提高对此类生物医学信号的测试精度,必须结合现代科学技术。目前用于检测心率的仪器很多,常见的有基于压力传感器、光电传感器、电容传感器和电声传感器等类型的测试装置,但是对脉搏测试部位的选择没有太大区别,对于能在指端进行脉搏精确测量的仪器还是比较少。这里介绍的智能人体心率检测装置可以实现人体指端的无创测量,测试过程简单,能精确测量出心跳次数,实现数据显示和上、下限报警功能。 1 装置组成及工作原理   系统组成如图1所示。此设计以单片机AT89C2051为核心,由光电传感器采集脉搏信号,经过前置放大电路、滤波电路、积分和比较电路后得到与脉搏相关的脉冲信号,该脉冲信号作为中断信号交由单片机进行脉冲周期的计算。然后得出每分钟的脉搏搏动次数(即心率),并在数码管上显示心率,同时利用软件实现上下限报警功能,在测量数据超过正常范围(如大于180次/min或小于45次/min)时进行报警以提醒医生注意。 2 装置硬件电路设计   2.1 传感器及信号处理电路   由于在人体指尖组织中的动脉成分含量高,而且指尖厚度相对其他人体组织而言比较薄,透过手指后检测到.的光强相对较大,因此光电式脉搏传感器的测量部位在人体指尖。将一对红外发射与接收探头置于手指两侧,当动脉血管随心脏周期性的收缩和舒张,动脉血管的血液容积随之发生变化时,红外接收探头便接收到随心脏周期性地收缩和舒张的动脉搏动光脉冲信号,从而采集到心脏搏动信号。   检测心率的传感器采用红外对管HRl068C一05Y2和PT331C。由于从人体手指采集到的生理信号十分微弱,其幅度一般在微伏到毫伏的数量级范围,而且在测试过程中由于肢体动作以及较强的工频干扰而产生大量的噪声。同时要将采集到的脉搏信号经过前置级放大电路进行高倍放大,这就要求电路具有高增益和高共模抑制比,至少在80 dB以上,即集成运放要有很高的共模抑制比和极低的零漂等,所选的电阻参数要尽量精确。放大电路由电阻网络和OP07组成,传感器及前置放大电路如图2所示。     由于内外噪声及50 Hz工频干扰等因素,即使电路具有很高的共模抑制比,但是脉搏信号非常微弱,淹没在于扰信号中,由于脉搏信号主峰频率在1 Hz左右,能量较强的分量也在20 Hz以下,所以设计低通滤波器的上限截止频率为40 Hz。对于工频干扰,采用对称性双T阻容有源陷波器对其专门滤除。再通过积分、比较电路整形之后便可以得到单片机所需要的标准的0~5 V脉冲信号。滤波、陷波电路及积分比较电路如图3所示。     2.2 单片机控制及显示电路   单片机控制及显示电路如图4所示。采用动态显示方式,利用单片机的P1口的P1.0~P1.6作为数码管七段码的输入。利用P3.0,P3.1,P3.2,P3.3作为4只数码管的选中信号(见图4)。从光电传感器输出的心率脉冲作为中断信号直接接到单片机89C2051的9脚(即T1端)。由T0定时,T1计数。P1.7输出心率的上、下限报警信号,经二极管驱动报警器报警。当心率低于下限45次/min时报警发出长音报警。当心率高于上限180次/min时报警器发出短音报警。 3 软件设计   系统软件流程图如图5所示。将要显示心率数千位、百位、十位、个位数分别存放在89C2051单片机内部的41H,42H,43H,44H单元内。采用动态扫描,每隔5 ms分别轮流显示千位、百位、十位、个位。当单片机的第9脚有一上升沿时,T1脚计数1次,T0定时50 ms,循环定时1 200次,T1计数即为心率次数。然后返回主程序继续执行显示程序。 4 电路调试及噪声分析   电路调试主要是对输入的脉搏信号进行滤波和放大,调试的效果直接关系到数据采集的精确度。通过测试可以得知,脉搏信号中存在严重的噪声干扰,前置级放大电路的设计至关重要。使用宁波中策平安彩票AG捕鱼娱乐有限公司的DFl405数字合成信号发生器来模拟脉搏信号,信号频率较高,信号处理电路对于高频信号(106 Hz左右)有很好的衰减作用,当信号频率适中的时候,信号可以按照设计的需要进行放大。50 Hz陷波器对工频干扰起到了很好的抑制作用。通过积分、比较电路对脉搏信号整形可以得到单片机需要的脉冲信号。通过整机调试,系统达到了预期的设计要求。   在测量过程中,传感器采集到的脉搏信号十分微弱,容易受到外界环境干扰,因此需要对脉搏传感器的干扰噪声进行分析。光电式脉搏传感器的主要有测量环境光干扰、电磁干扰、测量过程运动噪声干扰。为了减少环境光对脉搏信号测量的影响,同时考虑到传感器使用的方便性,采用密封的指套式的包装方式,整个外壳采用不透光的介质和颜色,尽量减小外界环境光的影响。通过光电转换得到的包含脉搏信息的电信号一般比较微弱,容易受到外界电磁信号的干扰,因此对硬件电路进行适当的屏蔽处理。脉搏信号变化缓慢,特别容易受到工频信号的干扰,利用陷波器有效地解决了这一问题。在测量过程当中,让指套和手指更紧的接触减少了他们之间的相对运动,降低了运动噪声。 5 结 语   心率检测中的关键技术在于传感器的制作和微弱脉搏信号的放大问题。通过实际的设计制作,结果证实了该设计的合理性和可行性,说明用科学设计的透射式传感器可实现手指脉搏的无损检测。但是在小信号放大技术方面有待于进一步研究。同其他心率检测仪相比较,该装置的体积小,重量轻,成本低,使用方便,测量准确等,具有很好的应用前景。

    时间:2020-09-10 关键词: 人体心率检测

  • 根据MSP430微处理器和GSM移动通信的血糖监护系统设计策

    根据MSP430微处理器和GSM移动通信的血糖监护系统设计策略 1 血糖监护系统概述   糖尿病是危害人类健康的四大主要疾病之一,目前没有根治的办法,只能通过血糖监测对糖尿病加以控制。血糖仪的出现,大大方便了糖尿病患者自行监测血糖。为了能更好地利用无线网络资源,方便用户随时随地的测量,开发了一种基于移动通信的血糖监护系统。

    时间:2020-09-10 关键词: MSP430 微处理

  • 根据社区智能远程健康监护系统设计方案策略

    根据社区智能远程健康监护系统设计方案策略

    根据社区智能远程健康监护系统设计方案策略 1 引言 人口老龄化已成为当今世界的一个突出的社会问题。据联合国统计,2002年,全世界的老龄人口(60岁及60岁以上)总数已达6.29亿,占世界人口总数的10%,到2050年,将占总人口数的21%。中国是世界上老年人口最多的国家,2004年底,中国60岁及以上老年人口已达1.43亿,占总人口的10.97%。到2050年,老龄化水平将推进到30%以上,其中,80岁及以上老年人口将占老年人口的21.78%[1]。随着老年期的延长,因疾病、伤残、衰老而失去生活能力的老年人显著增加,医疗保障面临严峻挑战[2]。 为了缓解人口老龄化带来的医疗压力,使缺乏自理能力的老年人、残疾人更好地融入家庭生活,减轻医护人员及其家人的护理负担,我们提出了一种基于视频的集护理、远程健康监护及远程诊断于一体的社区智能远程健康监护系统,并对视频远程健康监护及远程诊断工作过程中的关键技术视频编码和数据网络传输进行研究,从而推动社区远程健康监护系统的研究进展和推广应用,缓解我国越来越严重的人口老龄化问题。 2 基于视频的社区智能远程健康监护系统 本文介绍的基于视频的社区智能远程健康监护系统以智能护理床及配套的生理参数监护仪为家庭客户端,实时检测人体生理参数,视频监控被监护对象的身体状况,通过数据自动采集、实时分析监护对象的健康状况,若出现异常情况向医疗中心报警以获得及时救助。系统能与现有医院的医疗信息系统实现信息交互和共享,形成一个覆盖城市区域的医疗、护理和疾病预控网络。另外,系统可以实现医生和被监护对象之间的远程视频会话,让患者在自己熟悉的家庭环境中进行得以诊治,这不但减少了患者的心理压力,提高了诊断的准确性,还有利于病情的恢复,同时,减轻了患者因长期住院所带来的经济负担。除了老年人,系统的主要监护对象还可以是残疾人、术后恢复病人以及高发病人群等。 2.1 系统硬件构成 如图1所示,社区智能远程健康监护系统主要由家庭客户端和社区远程监护中心组成。家庭客户端与社区远程监护中心通过网络连接。 图1 基于视频的社区智能远程健康监护系统 家庭客户端硬件设备由智能护理床、生理参数监护仪、一台个人微机、一个可变焦摄像头、一个可控万向云台、一个视频采集卡以及网络接口设备组成。社区远程监护中心硬件设备主要由监护服务器和网络接口设备组成。 2.2 系统的功能 该远程智能健康监护系统主要包括对监护对象的监护、护理及远程诊断三方面的功能。 (1)监护功能:生理参数监护仪长期连续地检测出监护对象的各项生理参数,并通过网络将数据传送至远程监护中心服务器,远程中心服务器对数据进行实时处理和分析,识别出疾病的早期信号、异常情况和监护对象健康状况的变化。本系统可实现对心电、血压、血氧、脉搏、呼吸、体温六项生理参数的监测。通过视频,社区远程监护中心可以实时观察监护对象的身体状况和精神状态。 (2)护理功能:家庭客户端所使用的智能护理床是华南理工大学机器人研究室研制的集监测和护理于一体的智能护理床。可以根据键控或声控指令,完成帮助监护对象完成平躺、抬背、升降腿部、坐、翻身、排便等不同的体位变换,协助完成对监护对象的部分护理工作。 (3)远程诊断:系统采用了视频监护技术,在监护对象准许的情况下,对监护对象的身体状况进行远程观察,实时了解监护对象的身体状况,并结合其他生理参数数据,做出远程诊断。诊断过程中,医生和病人可以进行远程交互对话,大大提高了诊断效率和准确率。为了保护个人隐私权,家庭客户端可以控制视频监护系统的开关。 3 远程视频监护的关键技术 远程视频监护的工作流程如图2所示,首先由客户端摄像头来获取视频信号,然后对获取的视频信号进行有效的视频编码,编码后的视频通过网络传输至社区远程监护中心服务器,中心服务器收到视频数据后进行解码,然后进行视频显示。此工作过程中的关键技术主要包括视频编码和视频网络传输。视频技术应用于社区智能远程健康监护中,可以实现医生和病人之间的远程交互诊断,通过视频图像的传输,医生可以实时了解患者的病情状况和精神状态。但同时视频图像信息也给网络带来了大数据量的数据传输的问题,为保证系统监护的实时性,减轻网络传输的负担,本文采用最新数字视频编码国际标准H.264/AVC对视频图像进行编码,然后通过VC++编程实现了远程监护服务器与家庭客户端视频数据的传输,接受方对压缩的视频图像进行解码,然后在给定窗口上重现视频图像,从而实现社区智能远程健康监护系统中视频信息的实时传输。 图2  远程视频监护工作流程 3.1 基于H.264/AVC的视频编码 作为新一代国际视频编码标准。H.264/AVC具有编码效率高、网络适应性强等特点,不仅比H.263和MPEG-4节约了50%的码率,而且对网络传输具有更好的支持功能[3][4]。因此本文采用H.264/AVC对社区智能远程健康监护中产生的视频数据进行编码。H.264/AVC在视频实时通信领域首先得到了应用,如会议电视、可视电话等。它引入了面向IP包的编码机制,有利于网络中的分组传输,支持网络中视频的流媒体传输。H.264/AVC具有较强的抗误码特性,可适应丢包率高、干扰严重的无线信道中的视频传输,从而获得平稳的图像质量。而且,H.264/AVC的基本系统无需使用版权,具有开放的性质。 图3 H.264/AVC编码框架 H.264/AVC的编码框架如图3所示。与以前的标准一样,H.264/AVC仍然遵循基于块的混合编码框架。首先将输入图像分割成宏块,利用空间或时间预测去除冗余信息,然后对预测残差进行正交变换得到一系列变换系数。变换使残差系数能量相对集中,再进行量化,按其所含的能量大小分配不同数据量来描述。最后用熵编码进行二进制编码,最大限度消除量化后数据的符号冗余度。解码过程是编码的逆过程,H.264/AVC的详细内容可参考文献[5]。 3.2 数据网络传输的实现 家庭客户端与社区远程监护中心的数据传输基于Windows Socket来实现。Windows Socket支持两种类型的套接字,流式套节字和数据套接字。流式套接字因可靠性高而得到广泛应用。本系统采用流式套接字,中心服务器端建立一个监听套接字和一个连接套接字列队,家庭客户端建立一个通信套接字,中心服务器端先进入监听状态,当收到家庭客户端发出的连接请求后,建立一个连接套接字进行通信,如有其他客户端发来连接请求,则另建立一个连接套接字,加入到连接套接字列队,从而实现中心服务器与多个客户端的数据传输。监护数据网络传输的流程如图4所示。 图4 监护数据网络传输流程图 图5 社区智能远程健康监护系统的软件运行界面 基于视频的社区智能远程健康监护系统的软件运行界面如图5所示,软件通过Visual C++编程实现。界面可实时显示用户的各生理参数动态曲线及客户端传来的视频信息,视频窗口可根据需要放大、缩小及关闭。 4 结论 本文构建的基于视频的社区智能远程健康监护系统可以大大缓解由于人口老龄化所引起的医疗资源短缺问题,通过对在护理床上的老年人、残疾人健康相关的生理参数进行实时检测,社区监护中心可以及时掌握监控对象身体状况的突变并通过视频交互来进一步了解监护对象的详细情况,提出相应的医护建议,同时建立起医护对象的身体状态数据库,供医疗诊断时参考。对患者重要生理参数实施远程监护,不仅可以辅助医疗没,还能在病情突发恶化时报警。随着科技的进步,人口老龄化问题的加剧以及人民对医疗护理水平要求的不断提高,社区智能远程健康监护系统必将得到广泛的应用。

    时间:2020-09-10 关键词: 远程健康监护

  • FPGA的B超成像系统图像采集的原理和实现

    FPGA的B超成像系统图像采集的原理和实现

    FPGA的B超成像系统图像采集的原理和实现 1、引言 医学超声诊断成像技术大多数采用超声脉冲回波法,即利用探头产生超声波进入人体,由人体组织反射产生的回波经换能器接收后转换为电信号,经过提取、放大、处理,再由数字扫描变换器转换为标准视频信号,最后由显示器进行显示。在基于FPGA+ARM 9硬件平台的全数字化B超诊断仪中,前端探头返回的回波电信号需由实时采集系统进行波束合成、相关处理、采集并传输至ARM嵌入式处理系统,视频信号数据量大,实时性要求高,因此选用FPGA+SRAM构成实时采集系统,在速度和容量上都能满足上述要求。主要介绍B超成像系统中应用FPGA进行逻辑控制进行超声视频图像采集的原理和实现。 2、系统构成工作原理 如图1所示,采集系统首先由数字波束合成器对多通道超声回波信号进行波束合成,数字波束合成器对不同通道信号进行延时,使同一点的信号同相相加,同时对多个通道的回波信号进行空间域上的加窗,类似匹配滤波,可以提高信号的信噪比。然后对合成后的超声视频信号做一个帧相关的预处理,即图像帧与帧之间对应象素灰度上的平滑处理。因为叠加在图像上的噪声是非相关且具有零均值的随机噪声,如果在相同条件下取若干帧的平均值来代替原图,则可减弱噪声强度。在帧相关过程中,FPGA要控制数据的读取、处理以及存储。在为了满足视频显示的实时性,该采集系统采用双帧存结构的乒乓机制,由FPGA实现读写互锁控制。经帧相关处理完后的视频数据交替写入帧存A和帧存B,帧存读控制器根据后端处理速度读取帧存中的数据,送往DMA控制器,DMA控制器开启DMA通道进行数据传输。FPGA实现读写控制时,为了避免同时对一个帧存进行读写操作,需要设置读写互斥锁进行存储器状态切换。 3、系统设计与实现 3.1 数字波束合成 对于具有128阵元和32收发通道的超声探头,在进行32路AD转换后,将其分为4组,每组8路接收通道,每组用一片FPGA实现,在该FPGA内首先进行接收延时和动态聚焦再进行加权求和,其后再进行组间的求和产生超声数字视频信号。每一组的系统框图如图2所示: 对不同通道的回波信号进行不同的延时是达到波束聚焦的关键,延时按精度可分为粗延时和细延时:粗延时用于控制A/D采样的开始时间,精度为32 ns,延时参数由FPGA的片内RAM中读出,更换探头时系统控制器将相应数据写入这些RAM;细延时由采样时钟发生器根据不同的通道产生不同的A/D采样时钟,这些时钟的相位互相错开,其错开的值刚好等于各阵元传播延迟之差。考虑到系统的实时性以及探测过程中深度的变化,需要采用动态聚焦。动态聚焦是在A/D采样开始后,通过读取动态聚焦参数,在采样的过程中控制采样时钟发生器实现。 8个通道的回波信号经过A/D采样后,送入FPGA,缓冲之后同步读出进入加权模块,加权模块由8个无符号为数字乘法器组成。回波信号分别与加权参数相乘后得到具有动态聚焦和加权特性的数据。8组数据再经过3级加法器就得到波束合成之后的超声数字视频数据。 3.2 帧相关处理 帧相关模块如图3所示,由帧相关控制器和一片存储器组成,进行帧相关的存储器采用大小为256 kB的静态存储器(SRAM)。帧相关控制器由FPGA实现,完成地址产生、存储器读写控制、帧相关计算功能,因为实时性的要求,即保证送往后端双帧存的数据不能中断,所以考虑到对逐个象素数据读写的同时就进行相关处理,而且需要在同一个象素时钟周期内完成。读写控制器在1个象素时钟周期的前半段需要读出存储器中的数据和当前帧数据进行相关处理;时钟周期的后半段再将相关处理完的数据写入存储器以备后用,这样送往后端双帧存的数据依然是和象素时钟对应的连续象素数据。 帧相关的工作流程如下:   (1)地址产生。地址的产生由一个象索计数器实现,输入信号为帧同步信号VS和象素时钟CLK。前端提供的帧同步信号VS为该计数器的复位信号,在每一帧的开始,计数器清零,然后根据象素时钟CLK计数生成地址,每个象素时钟周期内地址不变,依据此地址进行存储器的读写。   (2)读取已有数据及相关处理。在一个象素时钟周期的前半段,也就是CLK跳变为高电平时,读写控制器输出的读信号OEl为有效,读出前帧中一个象素的数据,送到FPGA内部实现的加法器的A口,与同时到达B口的当前帧的对应象素数据相加平均。   (3)数据保存及传输。在同一个象素时钟周期的后半段,也就是CLK跳变为低电平时,读写控制器输出的写信号WEl为有效,相关处理完的数据写回原来的地址,同时该数据也送往帧存写控制模块。 3.3 帧存乒乓读写控制机制 超声视频图像需要实时地采集并在处理后在显示器上重建,图像存储器就必须不断地写入数据,同时又要不断地从存储器读出数据送往后端处理和显示。另外,为了满足这种要求,可以在采集系统中设置2片容量一样的帧存,通过乒乓读写机制来管理,结构如图3所示。为了确保任何时刻,只能有1片帧存处于写状态,设置1个写互斥锁;同时,只能有1片帧存处于读状态,设置一个读互斥锁。在系统初始时,1片帧存为等待写状态,另1片为等待读状态;开始工作后,2片都处于读写状态轮流转换的过程,转换的过程相同,但是2片状态相错开,这样就能够保证数据能连续地写入和读出帧存。该机制如图4所示,工作流程为:     (1)采集过程未开始,帧存A为等待写状态,获得写互斥锁;帧存B为等待读状态,获得读互斥锁;   (2)帧存写控制器收到一帧开始信号,判断为采集开始,设置帧存A写信号WE2 A有效,帧存A开始写入当前帧数据;同时帧存读控制器设置帧存B读信号OE2_B有效,帧存B则开始读出所存数据;   (3)一帧结束,帧存A写结束,释放写互斥锁;帧存B读结束,释放读读斥锁;   (4)等待另一帧开始,帧存A获得读互斥锁;帧存B获得写读斥锁;   (5)另一帧开始,写控制器设置帧存B写信号WE2B有效,帧存B开始写入数据;读控制器设置帧存A读信号OE2 A有效,帧存A则开始读出数据。 3.4 DMA传输 对整个B超诊断仪来说,系统要完成视频图像数据的实时采集和指定的处理,高性能ARM处理器的处理能力可达每秒数百万条指令,因此数据的传输设计是提高系统速度的关键环节。ARM处理系统与外部的数据传输可以通过CPU访问外部存储器的方法实现,但是效率低下,不能满足系统实时性的要求,而DMA数据传输以不占用CPU时间和单周期吞吐率进行数据传输的优点在实时视频图像采集系统中得到广泛的应用。但是因为DMA的传输速率和前端视频图像数据的输入速率不匹配,很难发挥出DMA数据传输的优势。由可编程的FPGA控制SRAM组成的双帧存可以很好地解决这个问题;此外,FPGA内部嵌入了一定数量的RAM,可以经过配置成缓冲存储器,通过灵活的逻辑结构可以方便地实现对输入输出数据流的控制,成为连接ARM处理系统和SRAM的纽带和桥梁。 4、结语 在B超数字视频图像实时采集系统中采用FPGA作为采集控制部分,首先可以提高系统处理的速度及系统的灵活性和适应性:由于在FPGA和ARM处理系统之间采用SRAM做数据缓冲,并用DMA方式进行传输,大大提高系统的性能;由于采用FPGA可编程逻辑平安真人视讯娱乐网,对于不同的超声视频信号,只要在FPGA内对控制逻辑稍做修改,便可实现信号采集;FPGA的外围硬件电路简单,因而在硬件设计中,可以大大减小硬件设计的复杂程度。而FPGA的时序逻辑调试可在软件上仿真实现,因而降低硬件调试难度。

    时间:2020-09-10 关键词: FPGA b超成像

  • 利用超小型ADC设计低功耗医疗设备方案

    利用超小型ADC设计低功耗医疗设备方案

    利用超小型ADC设计低功耗医疗设备方案     目前医疗设备的发展正在彻底变革家庭医疗保健市场,人们无需离开家门就能诊断出各种健康状况。技术的发展使得便携式自助护理保健系统成为现实,这些系统可以帮助人们监视诸如血压、血糖和体温等重要指标。         家庭医疗监察和监视系统可以帮助人们掌控自己的健康状况,但是这些医疗设备必须快速和高效率,并能在最重要的时候保证工作。随着便携式医疗传感器的发展,更长电池寿命和更小外形尺寸的需求对非组织入侵式护理来说变得愈加关键。         医疗测量设备一般需要整合多种信号调节电路,包括放大器、滤波、参考源和模数转换器(ADC)等,才能分辨和识别传感器信号。除了小尺寸外,读取传感器输出的模拟电路要求低功率工作也很重要,这样才能提供更长的电池寿命和更多的读取次数。随着更小更快的模拟IC的上市,通过墙上插座供电的小型、低功率医疗设备也变得越来越流行。     要求小尺寸和低功耗解决方案的医疗设备例子包括血液分析系统、脉搏血氧计、数字X射线和数字体温计等等。         医疗测量使用的模拟电路         有些医疗测量需要模拟电路连续运行,并且每秒要取得数千甚至数百万个读数。而有的应用每天仅需要读取一次。就这些偶然性测试而言,模拟电路仅需加一次电进行测量,然后在一天的剩余时间中一直处于空闲状态,此时可令其进入低功率“休眠”模式。         模拟IC的选择取决于传感器读数的频繁程度。模拟电路的核心是将来自传感器的模拟读数最终转换成数字结果的ADC,数字结果可储存在存储器中或显示在屏幕上。就大多数便携式医疗传感器应用而言,数据转换器的最佳选择将是逐次逼近型寄存器(SAR)ADC。         选择这类ADC有很多理由。首先,SAR ADC非常适用于测量从零赫兹 (稳定状态) 直到几兆赫兹的信号。这些ADC还具有快速响应和低延迟性能,是测量单个输入或多个输入的理想选择。另一个关键因素是功率。与闪存或管线型ADC不同的是,SAR ADC的功耗将随采样率的变化而改变。因此,以每秒1万次采样(10ksps)运行的ADC所需的功耗将低于以100ksps运行的功耗,而且功率节省非常显著。例如,一个以每秒几百万次采样(Msps)速度转换数据的SAR ADC可能消耗几毫安电流,而相同的SAR ADC以1ksps或更低采样率运行时可能仅消耗几十微安电流。    脉搏血氧计          脉搏血氧计就是受益于SAR ADC为核心的一个医疗应用例子。这种设备用于测量与病人血液中的血红蛋白相当的血氧含量。脉搏血氧计检测动脉中的血液脉动,因此还能计算病人的心律。一对发光二极管(LED)通过病人身体的半透明部分(通常是指尖)对着一个光电二极管。一个光发射器用660nm的波长触发一个红色LED,同时用940nm的波长触发一个红外线LED。光电二极管接收这两个信号,并将光致电流转换成电压。然后由ADC测量这个电压,从而在光通过病人身体后基于每种波长光的吸收率读出血氧百分数(参见图 1)。接下来通常是跨过一个隔离装置将数字数据发送到数据采集系统进行储存或在监视器上显示。     图1所示的凌力尔特公司LT6202放大器提供了增益带宽(100MHz)和低压噪声(1.9nV/Hz)的良好组合,同时仅消耗2.5mA电流。它还具有0.75pA/Hz的低电流噪声,在小信号应用中具有超低的总体噪声和失真功率。这个放大器规定用3V、5V和±5V电源工作。    

    时间:2020-09-10 关键词: adc 医疗设备

  • 基于MSP430颅内出血检测设备的研制策略

    基于MSP430颅内出血检测设备的研制策略

    P430颅内出血检测设备的研制策略 1 引言 在中国有许多因创伤性颅脑损伤的患者急需抢救,但相当一部分颅内出血患者因未能及时诊断,延误了抢救和治疗时机.因而出现脑血肿或脑疝后压迫脑组织.使脑干和脑实质受到不可逆转的损伤。近红外颅内出血检测设备能在短时间内对颅内出血作出准确的判断.为是否实施CT/MRI检查提供指征。可以显著提高患者的成活几率及神经系统功能恢复.在临床上主要用于硬膜外出血(EDH)、硬膜下出血(SDH)、浅表脑实质出血等,其优点是快速、准确、无损伤,可以应用于急救中心、医院临床科室、监护病房ICU及野外战场等。但在国内还未见到关于此类设备的相关报道,国外比较成熟的设备主要是德国Oicrain公司生产的CRAINscan仪器,价格昂贵。我们根据血红蛋白对近红外光的吸收特征及朗伯特一比尔定律.设计一种便携式设备.实现对人体脑组织的无创、直接测量,为及时监测病程变化和抢救治疗方案的制定提供依据。 2 基本原理 当忽略散射时.介质对人射光的总吸收量是介质中各色团吸收量的线性迭加,根据Beer-Lambert定律,透过介质的光强It入射光强I0间满足以下关系: OD=-lnIt/I0=μcl 其中μ是吸收系数,C是介质浓度,l表示光程。0D为光密度,当入射光波长一定时。OD是介质浓度的线性函数。正常情况下人体大脑两侧对光的吸收是对称的.如果有血管破裂引起内部出血时,局部血浓度升高.光的吸收就会增加周此通过对人体大脑两侧光密度的测量可以判断颅脑外伤患者是否存在脑出血现象,为是否需要进一步CT或MRI检查提供指征。 3 硬件设计 设备以MSP430单片机为控制核心.其输出脉冲信号驱动特定波长的LED产生近红外光.近红外光源透过颅脑组织,由检测探头中的光电传感器采集含有脑组织血氧信息的光信号,光电转换后将电信号传送给单片机,经过处理后的信号可以保存在EEPROM中也可通过LCD显示。还可以将信号通过USB口传送给计算机进行进一步处理或存储。其系统框图如图1所示: 图1 设备系统框图 3.1 检测探头 探头由光源、光电传感器和前端转换电路组成,小圆孔用于固定光源,光电传感器则同定在中间,光源选择LED,传感器选用S1226系列光电传感器.其暗电流小,感光灵敏度为高。光源和传感器之间的距离设定为40mm.探头的平均探测深度为约为3cm,光源以恒流源驱动.并在脉冲信号的控制下分时发光实现了双测检测的功能。接触面设计为弧形,边缘和放置光源及传感器的部位凸起,减少光源外泄,其余部位设计很薄,边缘有斜口,使其容易弯曲,基座材料采用医用硅胶,避免固定探头时给被测试者带来不适。 图2 检测探头 3.2 主机电路 3.2.1 MSP430单片机 系统选择,TI公司生产的16位单片机MSP430F149,采用高效RISC结构,有16个快速响应中断,最高时钟频率为8MHz,中断唤醒时间小于6微秒。其单片集成了多通道A/D转换器、模拟比较器、定时器、串行通信接口、数控振荡器(DCO)、硬件乘法器,可以满足大多数设备的应用需要。其内部预设了JTAG模块.具有完整的在线调试功能,可利用片内FLASH方便地实现软件升级。 3.2.2 信号存储 AT24C512是Atmel公司生产的64KB串行电擦除可编程存储器,采用8引脚封装,具有结构紧凑、存储容量大等特点,特别适用于大容量数据存储要求的数据采集系统。其与单片机连接电路见图3.单片机通过P3口来控制AT24C512的读写.P3.0控制串行时钟输入端SCL,在上升沿将SDA上的数据写入存储器,而在下降沿从存储器读入数据并送往SDA。P3.1控制双向串行数据输入输出端SDA,主要用于存储器与单片机之间的数据连接。 图3 LED驱动 3.2.3光源驱动电路 光源驱动电路如图3所示,单片机P5.4脚输出Vctrl电压。P5.6控制EN使能端,输入电压大于2.5V时,平安真人视讯娱乐网工作,输出电流驱动LED燃亮;当输入电压小于2.2V时,LED1、LED2、LED3端呈现高阻抗。不能燃亮。 SET是偏置电流输入端它与三只LED输出电流的关系为Iled=230xIset,而Iled=(Vctrl-Vset)/R,Vset=1.215V,即:Iled=230(Vctrl-1.215)/R 可以看出,LED输出电流只与P5.4输出电压及电阻R相关,并且在单片机控制下轮流发光。 3.2.4 液晶显示模块 LSDl2864CT是一款图形点阵液晶显示器,它主要由行驱动器,列驱动器及全点阵液晶显示器组成,可完成图形和文字显示。单片机通过P1口实现对液晶模块状态寄存器的操作.P1.0控制D/I寄存器选择信号线,P1.1控制R/W读写信号线,P1.2和P1.3控制CSI及CS2片选信号线,P1.4连接/RST端,P1.5接E使能信号线。P2口为数据端口与液晶模块的8位数据线相连。MSP430专门分出两组I/O端口用于液晶显示.通常启动液晶的顺序是:初始化读状态字写指令代码,写数据,开显示。程序代码按功能不同可分为写指令代码、写数据等模块.使能信号E上升沿触发有效。 3.2.5 计算机通讯 本系统接口芯片采用PHILIPS公司的PDIUSBD12,它是一款高性能的USB接口平安真人视讯娱乐网,集成了SIE、FIFO存储器、收发器和电压变换器。模块功能包括:同步模式识别、并串转换、位填充、解填充、CRC校验/产生、地址识别等。其8位并行数据接入MSP430的P5口,A0为命令、数据选择线.当A0=0时.MSP430向PDIUSBD12发送数据。当AO=1时。则发送命令。其数据交换采取中断查询方式,通过查询INT_N是否为低电平来确定是否接受到上位机的数据或命令,再通过_WR和_RD引脚实现MSP430与PDIUSBDl2的数据交换。 4 软件流程 系统软件设计主要采用MSP430的RISC精简指令用汇编语言和C语言混合编程。系统主要分为以下几个部分:(1)系统初始化,包括系统时钟校准,A/D转换参数初始化,看门狗的初始化,LCD控制器的初始化等;(2)液晶显示部分。包括汉字的显示和波形显示;(3)中断处理,包括键盘中断处理,信号采样中断,异常数据报警部分等;(4)血含量计算,采用逐点微分法进行血含量计算。图4是系统主程序的流程图。硬件初始化后.测是否有键按下.如果有则执行按键相对应的功能.然后由LCD显示不同功能所对应的信息。如果无按键按下则显示当前实测血浓度。等待用户的下一步操作。 图4 系统主程序 5 临床应用 该仪器在医院临床应用时,对病人进行近红外光谱检查,探查部位为双侧额、颞和枕部,检查时.首先读取并记录一侧血氧值,然后在对称部位采样,重复2次,取均值。计算两者之差,以差值≥0.45为标准判断有无出血,随后进行脑CT检查。结果在47个病例中,CT显示为脑出血的有29人.其中硬膜下出血19人.硬膜外出血7人,浅表脑实质出血3人。近红外光探测仪诊断脑出血28人,CT证实24例,4例为假阳性,假阳性病例中2人存在皮下血肿;近红外线检查为阴性者19例,17例为CT证实.两例假阴性病人中,1例为蛛网膜下腔出血,另1例为脑实质出血。 6 小结 由于近红外光穿透力不强,通过人体颅脑组织后衰减得相当厉害,设备空间分辨率不是很高,它不能替代常规CT检查来对颅内病灶进行定量和定位分析,其优点是在对人体无任何伤害的情况下快速地对伤情做出初步诊断。整体设计小巧.操作简单,价格便宜,具有一定的实用价值,投人生产后有望取得不错的经济效益。

    时间:2020-09-10 关键词: LCD 单片机 eeprom 医疗设备

  • 医疗平安彩票AG捕鱼娱乐平台选择:FPGA、ARM、X86、DSP还是GPU

    医疗平安彩票AG捕鱼娱乐平台选择:FPGA、ARM、X86、DSP还是GPU

    医疗平安彩票AG捕鱼娱乐平台选择:FPGA、ARM、X86、DSP还是GPU?   “迈瑞对于处理器平台的选择有两个看似矛盾的原则:‘多’和‘少’。其中‘多’是指多样性,我们知道无论是DSP、ARM、X86还是FPGA、GPU,每个平台都有各自的优点和缺陷,因此在设计产品时就可以根据他们的特点进行选择和搭配,处理器平台的多样性以及合理的搭配可以使产品更具有竞争力。”在日前举办的第三届中国国际医疗平安彩票AG捕鱼娱乐技术大会(CMET2010)上,深圳迈瑞生物医疗平安彩票AG捕鱼娱乐硬件技术委员会执行主任、系统工程师姚力与大家分享了迈瑞选择处理器平台的秘诀,“‘少’则是指的尽最大可能的减少处理器种类,多种处理器平台不但会给制造方面带来麻烦,在研发方面也会大大增加企业人力和资金的投入,每采用一个新的处理器平台都需要购买新的软件、重新培训工程师等等。因此迈瑞的传统是把首次使用获得成功的处理器平台在多个产品中反复应用,如果要使用一种新的处理器时,必须经过技术委员会的听证批准。”   据姚力介绍,迈瑞的明星产品便携式彩色超声仪M7中就使用了X86、FPGA、DSP 和ARM等多个平台应对不同工作,其中主处理器采用了性能与价格皆高的Intel CORE 2 duo、信号处理采用运算能力更加强大的FPGA和DSP共同完成、面板部分采用Nios II、电源部分则使用了低端的ARM7系列产品,充分体现了迈瑞选择处理器平台原则中的“多”字。另外一个原则“少”则体现在同一系列的产品一旦选定处理器,今后的几代产品中都将使用同样平台,几乎不会再做更换。 迈瑞M7: 医疗平安彩票AG捕鱼娱乐处理器平台选择中的“多”   统一平台重复使用: 医疗平安彩票AG捕鱼娱乐处理器平台选择中的“少”   这种代表了绝大多数医疗平安彩票AG捕鱼娱乐厂商选择处理器平台的策略使得多家处理器供应商瞄上了这一市场:“多”意味着只要你的处理器具有某种优势或特点就有可能会被选用,“少”则意味着一旦被选用,就获取了一个订单十分稳定的长期客户。因此在CMET2010上,NXP、Freescale、TI、ADI、Actel、Xilinx等处理器供应商都大力展示出了自己产品平台的特色与优势。   恩智浦半导体大中华区市场总监金宇杰介绍,NXP提供了从M3、M0到M4的一系列32位MCU,可以为医疗平安彩票AG捕鱼娱乐应用提供多样化选择。其中Cortex-M3系列产品性能更高,能够从ARM7的应用顺利过渡,具有USB OTG、Motor controlled PWM、QEI、CAN等丰富的周边功能,还拥有内存保护单元(MPU)、嵌套向量中断控制器(NVIC)、Flash加速器、DMA等多种独特的执行工具;Cortex-M0系列中断程序可使用C代码、兼容M3以及超低功耗深度睡眠价格使其更有利于医疗平安彩票AG捕鱼娱乐设备达到更低的功耗、获取更低的性价比;最新推出的M4系列则融合了MCU与DSP的功能,在处理DSP的算法速度上提高了5-10倍。   飞思卡尔半导体市场经理何英伟表示,Freescale已经在医疗平安彩票AG捕鱼娱乐领域耕耘了十余年,公司有专门的团队针对医疗市场开发产品,如近期就推出了用于大量个人医疗应用的MCU辅助产品——首款通用串行总线(USB)软件栈。在月底还将推出三款新的MCU:MC9S08LL/LH、MC9S08JE/MM、MCF51JE/MM,其中在JE和MM部分都会有两个不同版本,提供兼容引脚、可无缝升级的8到32位的MCU,十分适合用于开发同系列高低档产品。   德州仪器半导体事业部MSP430应用工程师郭君表示,MSP430系列已经在医疗平安彩票AG捕鱼娱乐产品中广泛应用。如TI 的低功耗 DSP 技术还可以消除由其它光源或读取信息时出现的移动而导致的信号失真,仅提取重要信号。通过复杂算法,DSP 技术可精确读取极低电平信号,这一附加处理功能在脉动式血氧计中非常有用,它能测量其它波长的吸收以检测其它种类氧络血红蛋白的饱和度。另外MSP430还集成了信号链、电源管理和显示驱动器元件,十分适合要求更多功能的新型医疗设备使用。   与其他厂商不同,ADI亚太区医疗业务资深业务经理周文胜并没有主推其DSP产品,而是剑走偏锋,详细介绍了ADI推出的脉搏血氧仪单板解决方案,使用该方案可以使医疗平安彩票AG捕鱼娱乐厂商迅速推出低成本、小尺寸、高性能的便携式脉搏血氧仪,大概是希望能够利用更加便捷的设计吸引一些设计能力不足或者想在便携产品减少研发投入的厂商。   参加CMET2010的还有Xilinx与Actel两个FPGA厂商,据赛灵思亚太区市场及应用总监张宇清介绍,拥有超低功耗、超多接口、灵活配置以及更强计算能力等特点的FPGA更加适合医疗成像、诊断、监测和治疗等等医疗平安彩票AG捕鱼娱乐中专有应用,而FPGA更加有利于创新的特性也将在中国医疗平安彩票AG捕鱼娱乐产业升级的过程中发挥重要作用。Actel技术支持/培训经理戴梦麟则介绍了其独有的基于Flash的FPGA技术,据其介绍,基于Flash的特性使得Actel FPGA具有上电即行、固件错误免疫等独特优势。   而在大会上没有出现的X86与GPU阵营也各有个的特点,如X86是目前计算机通用平台,对于开发人员来讲界面十分亲和,而且X86产品经过intel多年的努力,接口十分丰富,性能也相对较高,不过存在价格偏高、功耗偏大的先天缺陷,这一点intel目前正在弥补。GPU平台虽然还未获得大量使用,但依靠其图像处理能力已经获得了医疗成像领域的广泛关注,姚力甚至称其为“下一代处理器平台”。   不过,正如文章开头所述,无论是那种处理器都不可能独占市场。因而各家厂商需要做的不是拼命争抢同一个市场,而是充分发挥自身技术的优势,专攻更加适合自己产品的应用市场。不但如此,彼此之间还应该进行更加充分的合作,从而让终端产品厂商更加容易的进行搭配,这一点现在也得到了大家的认可,如赛灵思就与ARM开始了深度合作,在FPGA中集成了ARM内核,MIPS也向Altera 公司授权了MIPS32TM 架构,相信随着这些合作的深入,未来的处理器市场将会是百花齐放、各尽其责的一片大好场面。 funcTIon ImgZoom(Id)//重新设置图片大小 防止撑破表格 { var w = $(Id).width; var m = 650; if(w < m){return;} else{ var h = $(Id).height; $(Id).height = parseInt(h*m/w); $(Id).width = m; } } window.onload = funcTIon() { var Imgs = $("content").getElementsByTagName("img"); var i=0; for(;i

    时间:2020-09-10 关键词: 医疗平安彩票AG捕鱼娱乐平台

  • 数字式超声波探伤仪中高速数据采集模块技术

    数字式超声波探伤仪中高速数据采集模块技术

    数字式超声波探伤仪中高速数据采集模块技术 由于超声波检测具有穿透力强,检测灵敏度高等优点,因而在航空航天、冶金造船、石油化工、铁路等领域起着广泛的作用。一般采用超声无损检测技术的超声探伤仪有模拟式和数字式之分,随着计算机技术、微平安彩票AG捕鱼娱乐技术及数字信号处理技术的发展,传统的模拟式超声探伤仪正逐渐被功能先进的数字式超声探伤仪所取代。   超声波的回波信号是高频信号,其中心频率最高达到20 MHz以上,常用的超声波探头中回波信号的频率一般为2.5~10 MHz,要使这样的高频信号数字化,系统就对模/数转换电路提出了很高的要求。根据Shannon采样定理和Nyquist采样准则,在理想的数据采集系统中,为了使采样信号不失真地复现输入信号,采样频率至少是输入信号最高频率的两倍。在实际使用中,为保证数据采集的准确度,应增加在每个输入信号周期内的采样次数,一般每周期采样7~lO次。有些系统对采样信号频率的要求更高。现有的模/数转换电路方案在可靠性、功耗、采样速度和精度上都存在诸多不足,不能满足某些实际情况的需要,而大规模集成电路技术的发展为设计高速、高精度、高可靠性、低功耗的超声信号采集方案提供了可能性。本文设计了一种采样速率达100 MHz的超声波采集模块,并通过FPGA对采样数据进行压缩后进行数据缓存。   1 数字式超声探伤仪原理   数字式超声探伤仪结构框图如图1所示   数字化超声探伤仪一般包括超声发射单元、超声接收单元、信号调理单元(包括放大、检波、滤波等模拟信号处理环节)、模数(A/D)转换单元、数据缓冲单元、数据处理单元、波形显示单元以及系统控制与输入/输出单元(包括通信、键盘操作、报警等)。本文主要讨论数字式超声探伤仪中高速采集的关键技术与实现方法,涉及到A/D转换单元和数据缓冲单元。   2 高速度、高精度采样硬件结构   2.1 数据采集模块的结构框图   图2给出本文数据采集模块的硬件结构框图,它由高速A/D数据转换器、FPGA、时钟电路、复位电路及电源电路组成。其中,A/D数据转换器负责对模拟信号进行采集转换;FPGA负责采集控制、数据压缩及数据缓冲。下面对A/D数据转换器及FPGA进行介绍。   2.2 AD9446简介   AD9446是一种16 b ADC,具有高达100 MSPS的采样率,同时集成有高性能采样保持器和参考电压源。同大多数高速大动态范围的ADC芯片一样,AD9446也是差分输入,这种输入方式能够很好地抑制偶次谐波和共模信号的干扰。AD9446可以工作在CMOS模式和低电压差分信号(LVD-S)模式,通过输出逻辑控制引脚进行模式设置。另外,AD9446的数字输出也是可选择的。可以为直接二进制源码或二进制补码方式。在实际电路的PCB设计中,由于AD9446是对噪声敏感的模拟平安真人视讯娱乐网,所以在具体PCB设计时需做到以下几个方面:A/D模拟电源单独供电,模拟地与数字地单点接地,差分输入线等长,采用精确的参考电压源等。   2.3 采集控制、数据压缩及数据缓冲的FPGA实现   FPGA主要实现整个模块的数据采集控制、数据压缩及数据缓冲等功能。文中FPGA采用Xilinx公司的Spartan3E系列(XC3S500E)。这款FPGA芯片功能强大,I/O资源丰富,能够满足很多实际场合的需要。下面对其中数据采集控制、数据压缩及数据缓冲FIFO的设计做出介绍。   2.3.1 数据采集控制   AD9446芯片的控制时序与传统的低速A/D有所不同,它完全依靠时钟来控制其采样、转换和数据输出。AD9446通常在CLK第一个时钟的上升沿开始采样转换,并在经过延迟tpd后,开始输出数据。而数据则在第13个时钟到来时才出现在D15~D0端口上。图3是AD9446工作在CMOS模式下的时序图。   数字时钟管理单元(DCM)是FPGA内部管理、掌控时钟的专用模块,能完成分频、倍频、去抖动和相移等功能。通过FPGA的DCM可以很方便地对AD9446的时钟输入信号进行掌控。在实际电路中需要注意的是要做到DCM倍频输出的时钟信号与AD9446的时钟输入信号保持电平匹配。   下面给出调用DCM后时钟输出的VHDL语言描述:   2.3.2 数据压缩   数据压缩处理是对射频信号高速采样后进行前置处理的重要环节之一,需要在保持超声回波信号基本特征前提下对采样数据进行在线压缩,而且要求压缩后的数据与原始采样信号的包络相吻合。为此,在每次压缩过程中,只取采样所得的最大值,而舍弃其他采样值。FPGA将计算所得采样数据的压缩比、探头前沿延时计数值等数据送入相应的锁存器,然后发出时序复位命令并发射,启动探头延时计数,延时到后启动A/D采样,同时压缩比计数器开始计数,在时钟信号的控制下,每采样一次,压缩比计数器减1,并将当前采样值与前次采样值比较,如大于则保存,否则舍弃,直至压缩比计数到零后,得到一个有效的采样数据。同时压缩比计数器自动复位,重新开始计数,其工作流程如图4所示。   2.3.3 数据缓冲   为了解决前端数据采集与后端数据传输在速率上的不匹配问题,在FPGA内部设置一块数据缓冲FIFO,大小为8K×16 b,压缩后的数据直接存储到FIFO中,而微处理器对FIFO中数据的读取通过中断方式完成。数据缓冲FIFO通过core generator例化,只需要少量的读/写控制逻辑就可以使FIFO正常工作,而且FIFO的大小可以在FPGA提供的RAM位数范围内灵活设置。下面给出例化后的FIFO的VHDL语言描述:   保存在FIFO中的数据通过这些逻辑控制端口便于微处理器对其进行读取、清零等操作。   3 结语   设计的基于AD9446的数据采集模块采用FPGA实现数据采集控制、数据压缩及数据缓冲等功能,简化了硬件电路,提高了模块的可靠性和稳定性,并有利于模块的功能升级。同时采用高速高精度模/数转换器满足了数字式超声波探伤系统对数据采集精度方面的要求。另外,FP-GA对数据进行的预处理,方便了微处理器对数据的调用和后处理。

    时间:2020-09-10 关键词: 数据 超声波 探伤仪

首页  上一页  1 2 3 4 5 6 7 8 9 10 下一页 尾页